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This lecture covers some of the most basic elements of mathematics — sets, proofs, and
numbers. Section [ introduces sets and some related concepts. The summer math review
covered logical propositions and the operations. Section [C4 explores the relationship be-
tween sets and logic. Carter sections 1.1 and 1.2 are good reading for more information on
sets and orderings. Section 2 briefly discusses cardinality and introduces countable and
uncountable sets. Section B is about familiar sets of numbers, including the integers, ratio-
nals, and real numbers. The properties of these sets of numbers that make them distinct
are discussed in detail. This lecture will not explicitly discuss proofs, but it does include
some examples of proofs. For an explicit discussion of proof techniques, see Simon and
Blume appendix A1 or Kwong’s “Introduction to Logic and Proofs” from the summer re-
view material. Some of the material in this lecture, particularly the sections on cardinality
and constructing the real numbers, is more abstract and less practical than most of what
will be covered in this course. Do not worry if you find this material difficult. It will not
be essential to the later parts of the course. This material is included because I think it is
especially interesting, and it illustrates rigorous mathematical thinking and proofs well.

1. SETS

A set is any well-specified collection of elements.” Sets are conventionally denoted
by capital letters, and elements of a set are usually denoted by lower case letters. The
notation, 2 € A, means that 4 is a member of the set A. A set can be defined by listing its
elements inside braces. For example,

A={4,56}

means that A is a set of three elements with members 4, 5, and 6. The members of a set
need not be explicitly listed. Instead, they can be defined by some logical relation. For
example, the same set A could be written

A={neN:3<n<7} (1)

where N = {1,2,3,...} is the natural numbers. The expression in (0) could be read as,
“the set of natural numbers, 1, such that 3 is less than 7 is less than 7.” Sometimes | will
be used to mean “such that” instead of :. The elements of sets need not be simple things

L“Well-specified” is somewhat ambiguous, and this ambiguity can lead to trouble such as Russell’s para-
dox or Cantor’s paradox. We'll ignore these paradoxes, but rest assured that they can be avoided by more
carefully defining “well-specified.”
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like numbers. For example, if Ay = {n € IN : n > k} is the set of natural numbers
greater than k, then you could have a set of sets, B = {A1, A10, A¢}. Sets are unordered,
so the previous definition of B is the same as B = { A1, Ag, A1p}. Also, sets do not contain
duplicates, so for example, {1,1,2} = {1,2}. Sets can be empty. The empty set, also
called the null set, is denoted by @ or, less commonly, { }.
1.1. Economic examples. Sets appear all over economics.”

Example 1.1. [Sample space] In a random experiment, the set of all possible outcomes is
called the sample space. E.g. for the roll of a dice, the sample space if {1,2,3,4,5,6}. An
event is any subset of the sample space.

Example 1.2. [Games] A game is a model of strategic decision making. A game consists
of a finite set of n players, say N = {1,2,...,n}. Each player i € N chooses an action 4;
from a set of actions A;. The outcome of the game depends on the actions chosen by all
players.

Example 1.3. [Consumption set] The consumption set is the set of all feasible consump-
tion bundles. Suppose there are n commodities. A consumer chooses a consumption
bundle x = (x1, x2, ..., X, ). Consumption cannot be negative, so the consumption set is a
subset of R", = {(x1,...,x4) : x1 > 0,x2 > 0,..x, > 0}.

1.2. Set operations. Given two sets A and B, a new set can be formed with the following
operations:

(1) Union: AUB = {x:x € Aorx € B}.

(2) Intersect: ANB = {x:x € Aand x € B}.
(3) Minus: A\B={x:x€ Aand ¢ B}

(4) Product: Ax B={(x,y):x € A,y € B}

(5) Power set: P(A) = set of all subsets of A

Often, we will discuss sets that are all subsets of some universal set, U. In this case, the
complement of A in U is A° = U \ A. If we have an indexed collection of sets, { Ax }rex,
we may take the union or intersection of all these sets and denote it as Uy A or Niexc Ay

1.3. Set relations. If every element of A is also in B, then we say that B contains A and
write B O A, or A is a subset of B and write A C B. If, additionally, there exists b € B
such that b ¢ A, then we say that A is a proper subset of B, which is denoted by A C B
or B D A.

Example (2 Games continued). In a game subsets of players are called coalitions. The
set of all coalitions is the power set of the set of players, P(N).

The action space of a game is the set of all possible outcomes or combinations of actions,
A=A1 XAy X ... x Ay. Anelement of A, a = (ay,ay, ..., a,) is called an action profile.

“These examples come from chapter 1 of Carter.
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1.4. Equivalence between logic and set operations . The set operations, union, U, and
intersect, N, appear somewhat similar to the logical operations, or, V, and and, A. This is
not merely a coincidence. Predicates and logical operations are essentially equivalent to
sets and set operators. Recall from the summer review that a predicate is a statement that
may be either true or false depending on the value of its variable. For example, y2 =9, 1is
a predicate that depends on the variable y. More formally, a predicate is a function® from
a set, X, to the set {T, F}.

Given a predicate, p(x), we can construct its truth set, P = {x € X : p(x) = T}.

TifxeP
Similarly, given a set, P, we can construct the predicate, p(x) = oy . The

Fifx ¢ P
following theorem shows that this mapping is one-to-one and establishes the relationship
between set and logic operations.

Theorem 1.1 (Equivalence of truth sets and predicates ). Let p(x) and q(x) be predicates and
TifxeP

P and Q be the associated truth sets. Then if p(x) =
Q if p(x) Fifxg P

, we have p(x) = p(x)Vx €

X. Also,

(1) p(x) Aq(x)iffx € PNQ
(2) p(x) Vaq(x)iffx € PUQ
3) ~ p(x) iff x € P°

(4) p(x) = q(x) iff P C Q

Proof. Suppose p(x) = T. Then x € P and p(x) = T by definition. Similarly, if p(x) = F,
then p(x) = F. Thus, p(x) = p(x). (I)-(3) also follow directly from our definition of p(x),
g(x), P,and Q.

To show (B), suppose p(x) = q(x). By definition of P, Vx € P, p(x) = T, which implies
q(x) =T, so x € Q. Conversely, suppose P C Q. Then x € P implies both p(x) = T and

x € Q, which also implies g(x) = T. O
Corollary 1.1. Let X, Y, and Z be sets contained in some universe U. The following sets from
A B
(XUY)© Xenye
columns A and B are equivalent. (X NY)° X‘uye

XN(yuz) (XnY)u(Xn2z)
Xu((Yynz) (Xuy)n(xuz)

Proof. This follows from theorem [T above and Theorem 1 from the review material on
Logic. Let x(a), y(a), z(a) be the predicates associated with X, Y, and Z. From theorem
[0, a € (XUY)“iff ~ (x(a) Vy(a)). From theorem 1 from the logic review, ~ (x(a) V
y(a)) iff (~ x(a)) A (~ y(a)). The remainder of the proof proceeds similarly and is left as
an exercise. U

350mewhat informally, a function from X to Y takes each x € X and associates it with a single y € Y. To
be precise, a function is an ordered triple of sets (X, Y, F) where X is the domain, Y is the codomain, and
F C X x Y consists of ordered pairs (x,y) : x € X,y € Y. We will not need this formal definition in this
course.
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2. CARDINALITY

EnSometimes, we want to compare the size of two sets. This is easy when sets are finite;
we simply count how many elements each has. It is not so easy to compare the size of
infinite sets. Consider, for example, the natural numbers, IN, the integers Z, rationals, Q,
and real numbers, R. Let |A| denote the “size” of A (we will define it precisely later). We
know that

NCZCQCR,

so it seems sensible to say that
IN| < |Z] < Q[ < [R].

On the other hand, the even integers are a subset of Z, but since we can write the set of
even integers as {2x : x € Z}, it doesn’t seem like there are any more integers than even
integers. It was questions like these that led Georg Cantor to pioneer set theory in the
1870’s.
A function (aka mapping), f : A — B is called one-to-one (aka injective) if for every

b € Btheset{a: f(a) = b} is either a singleton or empty. f is called onto (aka surjective)
ifVb € Bda € A: f(a) = b. If there exists a one-to-one mapping of A onto B (aka bijection
or one-to-one correspondence), then we say that A and B have the same cardinal number
(or cardinality) and write |A| = |B|. Let J, = {1,..,n}. A is finite if |A| = [J,|. Ais
countable if |[A| = |IN|. A is uncountable if A is neither finite nor countable. You should
verify that the relation |A| = |B] is reflexive (|A| = |A|), symmetric (|A| = |B| implies
|B| = |A|), and transitive (if |A| = |B| and |B| = |C| then |A| = |C|).
Lemma 2.1. Z is countable.
Proof. We can construct a bijection between Z and IN as follows:

Z: 0 -1, 1, 2, =2, 3, =3,..

N:1 2 3, 4 5 6 7.
Or as a formula, f : N — Z with

) = {(n—l)/Zifnodd

—n/2if n even.
O
Theorem 2.1. Every infinite subset of a countable set A is countable.

Proof. A is countable, so there exists a bijection from A to IN. We can use this mapping to
arrange the elements of A in a sequence, {an}lea. Let B be an infinite subset of A. Let
n1 be the smallest number such that a,, € B. Given ny_1, let nj be the smallest number
greater than n;_; such that a,, € B. Such an n; always exists since B is infinite. Also,
B = {ay, }3>  since otherwise there would bea b € B, but b ¢ A. Thus, f(k) = ay, is a
one-to-one correspondence between B and IN. U

4This section based on Chapter 2 of Rudin, Walter (1976). Principles of Mathematical Analysis. McGraw-
Hill.
5By this notation, we mean an infinite ordered list of elements of A, i.e. a1, a3, a3, ....
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Theorem 2.2. The rational numbers are countable.

Proof. Consider the following arrangement of positive rational numbers:

1/1 2/1 3/1 4/1
1/2 2/2 3/2 4/2
1/3 2/3 3/3 4/3

Starting in the top left and going back and forth diagonally, we get the following se-
quence:

1/1,1/2,2/1,1/3,2/2,3/1, ...
Adding zero and the negative rationals, we can write e.g.
o1/1,-1/1,1/2,-1/2,2/1,-2/1,1/3,-1/3,2/2,-2/2,3/1, ...
=01,92, 93,94, -

Continuing on in this way, we could list all rational numbers. Some of these fractions
represent the same number and can be removed. Thus, we obtain a correspondence be-
tween the rationals and an infinite subset of IN. However, by theorem T, this subset is
countable, so the rationals are also countable. J

Theorem 2.3. The real numbers are uncountable.

Proof. (Cantor’s diagonal argument) We have not rigorously defined the real numbers, so
we will take for granted the following: every infinite decimal expansion, (e.g. 0.135436080...)
represents a unique real number in [0,1), except for expansions that end in all zeros or
nines, which are equivalent®,

We will use proof by contradiction to prove the theorem. Proof by contradiction is a
common technique that works by showing that if the theorem were false, then we could
prove something that contradicts what we know is true.

Suppose the theorem is false. Then we can construct a surjective mapping from IN to
(0,1). That is we can list all real numbers in (0,1) as

ri1 =0. dyp dip diz
rp =0. dy dyp dxy
r3 =0. d3 d3p ds3

where each d;; € {0,1,...,9}, and no expansion ends in all nines. We will now show
that there is a real number in (0,1) that is not in the list. Let x* = 0.d]d}dj.... where
dy, is chosen such that d}; # d,, and x* is sure not to end in all nines. There are many

®E.g. 0.199... = 0.200...
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possibilities, but to be concrete, let’s set

o [t Vi duy <8
0if dyy > 8

n

x*isin (0,1), but x* # r, for any n because d;; # dn,. Thus, we have a contradiction, and
there cannot be a onto mapping from IN to (0, 1). If there is no surjective mapping from
IN to (0,1), there can be no surjective mapping from IN to R since (0,1) C R. O

Countable sets are said to have cardinality Ny (“aleph null”). Note that an implica-
tion of theorem 1 is that N is the smallest infinite cardinal number. The real numbers
have cardinality of the continuum, sometimes written 2% or ¢. You might be wondering
whether there are larger cardinal numbers. The answer is yes. The set of all subsets of
a set, A, called the power set of A, always has larger cardinality 2/4] (the proof of this is
similar to the proof that the real numbers are uncountable).

A final question to ask yourself is whether there are sets with cardinality between ¥,
and 2%0. The answer to that question is whatever you want it to be. The conjecture that
there are no cardinal numbers between Xg and 2% is known as the continuum hypoth-
esis. It was proposed by Cantor in the 1870s. In 1900, Hilbert made a famous list of 23
important unsolved problems in mathematics. The continuum hypothesis was the first.
In 1940, Godel showed that the continuum hypothesis cannot be disproved from the stan-
dard axioms that lie at the foundation of mathematics. In 1963, Cohen showed that the
continuum hypothesis cannot be proved from the standard axioms. This is an example of
Godel’s incompleteness theorem, a very interesting result that we won’t be able to cover
in this course. Loosely speaking, Godel’s incompleteness theorem says that for any non-
trivial set of assumptions and system of logic, you can make statements consistent with
the system of logic that cannot be proven or disproven from the assumptions.

3. NUMBERS

We have been assuming familiarity with the natural numbers, integers, rationals, and
real numbers. This section explores some properties of these sets of numbers and heuristi-
cally describes how these sets of numbers are constructed. It may appear silly and slightly
confusing to try to be “rigorous” about something like real numbers that we already feel
like we understand. Much of mathematics is about finding and describing patterns that
apply to abstract objects. Many of the abstract objects that we will study are similar to the
real numbers in some ways, but different in others. Examples of things that are similar to
the real numbers include complex numbers, vector spaces, matrices, and sets of functions.
Some of these things we will be able to add and multiple just like real numbers, but not
all of them. A natural sort of question is: this class of objects shares properties X, Y, and Z
with the real numbers; what theorems that we know about the real numbers will also be
true of this class of objects? Before answering this sort of question we have to be precise
about what properties the real numbers have.

We will take for granted that we understand what the natural numbers are. Note,
however, that it is possible to rigorously construct the natural numbers from a simple list
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of assumptions using logic or set theory. We will also take for given that we know how to
add and multiply natural numbers. Addition has the following nice properties.

1 Closureifa,b € N,soisa+b
2 Associativea + (b+c¢) = (a+b) +c.

If we demand that addition also has

3 Identity 30s.t. a + 0 = g,
4 Inverse Va, dbst.a+b =0

then we must expand the natural numbers to include the integers, Z. Multiplication also
satisfies these four analogous properties:

1" Closureifa,b € A,soisab

2" Associative a(bc) = (ab)c.

3’ Identity d1 s.t. al = g,

4’ Inverse Va # 0, dbs.t. ab =1

However, if we want multiplicative inverses to exist for all z € Z, then we must further
expand our set of numbers to the rationals, Q. Addition and multiplication are also

5 Commutativea+b =0b+a
6 Distributive a(b + c) = ab + ac

To summarize: if we start with the natural numbers, and then demand that multiplication
and addition have these six properties, we end up with the rational numbers.

More generally, we could study a set A combined with one or two operations that
satisfy certain properties. The branch of mathematics that studies these sort of objects
is abstract algebra. We will not be studying algebra in detail, but it may be useful to be
familiar with some basic terms. A group is a set and operation, (A, @) such that A is
closed under @, @ is associative, there exists an identity, and inverses exist under @ (i.e.
properties 1-4). If @ is also commutative, we call (A, ®) an abelian (or commutative)
group. Examples of groups include (Z, +) and (Q, -). A ring is a set with two operations,
(A, ®,®) such that (A, @) is a group, and © has properties 1-3 and 6. (Z, +, ) is a ring.
One ring that will come up repeatedly in this course is the set of all n by n matrices
with the usual matrix addition and multiplication. A field is a set with two operations
such that 1-6 hold for both operations. (Q,+,) is a field. Another field that you may
have encountered is the complex numbers with the usual addition and multiplication. If
you're interested you may want to verify that the integers modulo any number is a ring,
and the integers modulo any prime number if a field.

3.1. Real numbers. The rational numbers are pretty nice; they’re a field with the six prop-
erties listed above. However, Q does not contain all the numbers that we think it should.
For example,

Theorem 3.1. /2 ¢ Q
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Proof. Suppose v/2 € Q. Then /2 = p/q where p and g are not both even. If we square
both sides, we get

2 ZPZ/qZ
29> =p*.

Hence, p2 must be even. From the review, then p must also be even, say p = 2m. Then
we have

2¢% =2(2m?)
g% =22,
which means g must also be even, contrary to our starting assumption. 4

Apparently, the rationals have some holes in them that we should fill in. To do so in
a unique way, we need to define another property of the rational numbers. A totally
ordered set is a set, A, and a relation, <, such that (i) (total) Va,b € A either a < b or
a = bora > b;and (ii) (transitive) if a < band b < c then a < c. An ordered field is a
field that is a totally ordered set and addition and multiplication preserve the ordering in
that i)if b < cthena+b <a+c (ii)ifa > 0and b > 0 then ab > 0.

We need one more definition. Simon and Blume state that one property of real numbers
that will be used throughout the book is the least upper bound property. It turns out that
this property is not only useful; it lies at the foundation of the real numbers. Let S be
an ordered set and A C S. s € S is an upper bound of A if s > aVa € A. sis a least
upper bound (aka supremum) of A if s is an upper bound of A and if r < s, then r is not
an upper bound of A. S has the least-upper-bound property (aka complete or Dedekind
complete) if whenever A C S has an upper bound, A has a least upper bound. Given that
V2 ¢ Q, it should not be surprising that the rational numbers are not complete. You will
prove this fact on the first problem set.

Theorem 3.2 (Real numbers). There exists an ordered field, R, that has the least upper bound
property. R contains Q. Moreoever, R is “unique”.

The proof of this is surprisingly long, so we will not go over it in detail. Existence can
be proven by construction. One method involves constructing real numbers as Dedekind
cuts. A Dedekind cut is a nonempty subset of the rationals, A C Q, such that (i) if p € A,
g€ Qandg < p, theng € Aand (ii)if p € Athenp < r forsomer € A (ie. A
has no greatest element. For example, the Dedekind cut associated with /2 would be
{p € Q: p? < 2}). We would then define addition, multiplication, and ordering of these
cuts in the natural way and verify that all the properties above are satisfied. See Rudin
for details if you are interested.

The “uniqueness” is harder to prove. R is unique in the sense that any two ordered
fields with the least-upper-bound property are isomorphic (there exists a bijection be-
tween them that preserves multiplication, addition, and ordering). The proof proceeds
by supposing that R and IF are two ordered fields with the least-upper-bound property

and then shows that there is an isomorphism between them.
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4. RELATIONS

Orderings, or, more generally, relations, are important in economics because they can
be used to represent preferences. Relations are things like =, <, <, and C. Formally,

Definition 4.1 (Relation). A relation on two sets A and B is any subset of A X B, R C

A x B. We usually denote relations by a Kb if (a,b) € R (where X could be some other
symbol).

Usually, A = B, and then we say X is a relation on A.
Example 4.1. Let A = B = R. Then < is associated with R = {(a,b) € R? : a < b}.
The relations that we will study will have some or all of the following properties.

Definition 4.2 (Properties of relations). A relation X on Ais

. .. R
o reflexiveifa~aVa € A,

symmetric if a Kb implies b Ra,

.. .. R R . . R
transitive if a ~ b and b ~ c implies a ~c,

antisymmetric if a Rband bR a impliesa = b,

c e R R
asymmetric if a ~ b implies b is not ~ 4, and

e complete if either a XborbXaorboth Va,b € A.

As an exercise, you may want to work out which of the above properties =, <, and <
on R have.

Example 4.2 (Preference relation). A consumer’s preference relation, >, is a relation on
her consumption set, X. x > y means that the consumer likes the bundle of goods x at
least as much of the bundle of goods y. We usually assume that preference relations are
complete and transitive.

An equivalence relation is a relation that is complete, transitive, and symmetric. If ~ is
an equivalence relation on X, then the equivalence class of xis ~ (x) = {a € X : a ~ x}.
Since equivalence relations are complete all x € X must be in some equivalence class.
Also, since equivalence relations are symmetric, each x € X is in only one equivalence
class.

Example 4.3 (Indifference). Let > be a preference relation on X. Then we can define an
equivalence relation by x ~ y if x > y and y > x. This relation is called the indifference
relation. The equivalence classes of ~ are called indifference classes. You are probably
familiar with graphs of indifference curves. Indifference curves are indifference classes.

There is much more that can be said about relations, particularly types of order rela-
tions. See Carter section 1.2 for more.
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